

eco³ FLUID TO FLUID HEAT PUMP

SUBMITTAL DATA

eco³, ECO-4100

Fluid-to-Fluid R-410a Heat Pump Engineering Guide Specifications

General Notes:

- a. The liquid source fluid-to-fluid heat pump shall be a single packaged non-reversing heating / cooling unit containing an internal refrigerant by water subcooling heat exchanger for preheating non potable water (such as an ice resurfacer).
- b. The unit shall be listed by a nationally recognized safety testing laboratory or agency, such as ETL. Testing shall be equal to CSA C22-2 or UL 427.
- c. The ECO-4100 liquid source fluid-to-fluid heat pump unit as manufactured by *Emerald Environmental Technologies*, shall be designed to operate with evaporator entering liquid temperatures between 10°F (-12°C) and 70°F (21°C), and condenser entering liquid temperatures between 50°F (10°C) and 110°F (43°C).
- d. The evaporator entering fluid temperature must be lower than the condenser entering fluid temperature.
- e. Each unit shall be run-tested at the factory. Each unit shall be pallet mounted and stretch wrapped for shipping.

Refrigerant Circuit:

- a. All units shall contain a sealed refrigerant circuit including a hermetically sealed scroll compressor with internal check valve, unidirectional electronically controlled thermal expansion valve assembly, two (2) stainless brazed plate fluid to refrigerant heat exchangers, factory-installed high and low pressure safety switches and service ports and a liquid line filter-drier.
- b. The refrigerant circuit shall utilize the tight closing electronic expansion valve to prevent migration of refrigerant to the evaporator when the compressor is not operating.
- c. Low-pressure lockout switch shall be automatic reset with interruption to compressor contactor power supply.
- d. High-pressure lockout switch shall be manual reset.
- e. The electronic thermal expansion valve assembly shall provide proper superheat over the liquid temperature range with minimal "hunting". The electronic thermal expansion valve shall be designed for single direction refrigerant flow. Bi-directional valves shall not be permitted.
- f. Externally mounted pressure controlled fluid regulating flow valves are not acceptable.
- g. The fluid to refrigerant evaporator and refrigerant suction lines shall be insulated with 3/4" (13mm) thick closed cell foam insulation (Armaflex) to prevent condensation at low liquid temperatures.
- h. Compressor shall be designed for refrigeration duty, with internal isolation and mounted on rubber vibration isolators. Compressor shall be manufactured with oil-sight glass.
- i. Compressor motor shall have internal motor protection and shall be three phase.

- j. Compressor shall be designed for use with R410A refrigerant. Refrigerant piping shall be connected to compressor through a vibration isolator to permit absorption of compressor vibration and start-up torque without stress on piping.
- k. Refrigerant piping shall be clamped and supported to minimize vibration and prevent stress cracking.
- I. The liquid to refrigerant heat exchangers shall be brazed plate type constructed with type 316 stainless steel plates and brazed with copper. The heat exchangers shall be designed for minimum operation from -321°F (-196°C) to 350°f (177°C), and be capable of withstanding 650 PSIG (4480kPa) working pressure on liquid and refrigerant sides. Heat exchangers shall be manufactured with built in refrigerant distributor tube with calibrated orifices to distribute gas evenly throughout heat exchanger, and be designed for use with R410A refrigerant.
- m. Each unit shall be factory run tested for a minimum of two hours under actual load conditions, including:
 - Amperage and voltage draw
 - Refrigerant Pressures
 - Sight Glass Status
 - Operation and Verification of High/Low Pressure Controls
 - Entering and Leaving Fluid Temperatures for Condenser, Evaporator and Subcooler
 - Superheat Measurement
 - Operation of Compressor Overload Protection

Electrical:

- a. Controls and safety devices will be factory wired and mounted within the unit.
- b. Controls shall include digital controller, expansion device controller for electronic EXV, user interface, compressor contactor, 24 VAC control circuit, built-in fuse protection, anti-rotation protection and voltage/loss of phase protection.
- c. Electrical circuit shall include fault light indicator light and green running indicator light on outside of cabinet, and shall include an "on-off-auto" selector switch mounted inside the heat pump cabinet.
- d. The digital controls can be provided with optional BACnet and or Modbus cards for remote BMS control.
- e. The system can be provided with a full digital control system to act as a global controller.

Electrical Specifications	Compressor		Total	Minimum	Maximum
			Unit	Circuit	Fuse
Voltage/Phase/Hz	RLA	LRA	FLA	Ampacity	Size
460/3/60	53.0	290	61.9	77.3	140
575/3/60	42.0	232	50.0	62.5	113

Fluid Piping:

- a. Evaporator and Condenser supply and return fluid connections shall be 2" MPT threaded fittings.
- b. Non potable water connections to the subcooling heat exchanger shall be 3/4" sweat to a provided ball valve.
- c. All Fluid piping shall be insulated by customer on site to prevent condensation at low liquid temperatures.
- d. Pressure/temperature ports shall be included on both condenser and evaporator fluid inlets and outlets.
- e. Each unit shall be factory run-tested for a minimum of two hours under actual load conditions. A copy of the run test shall include:
 - Amperage and voltage draw
 - Refrigerant pressures
 - Sight glass status
 - Operation and verification of high and low pressure controls
 - Entering and leaving fluid temperatures for condenser and evaporator
 - Superheat measurement
- f. A copy of the run-test shall be included in the installation manual shipped with the unit and a copy shall be maintained at the factory.

Casing and Cabinet:

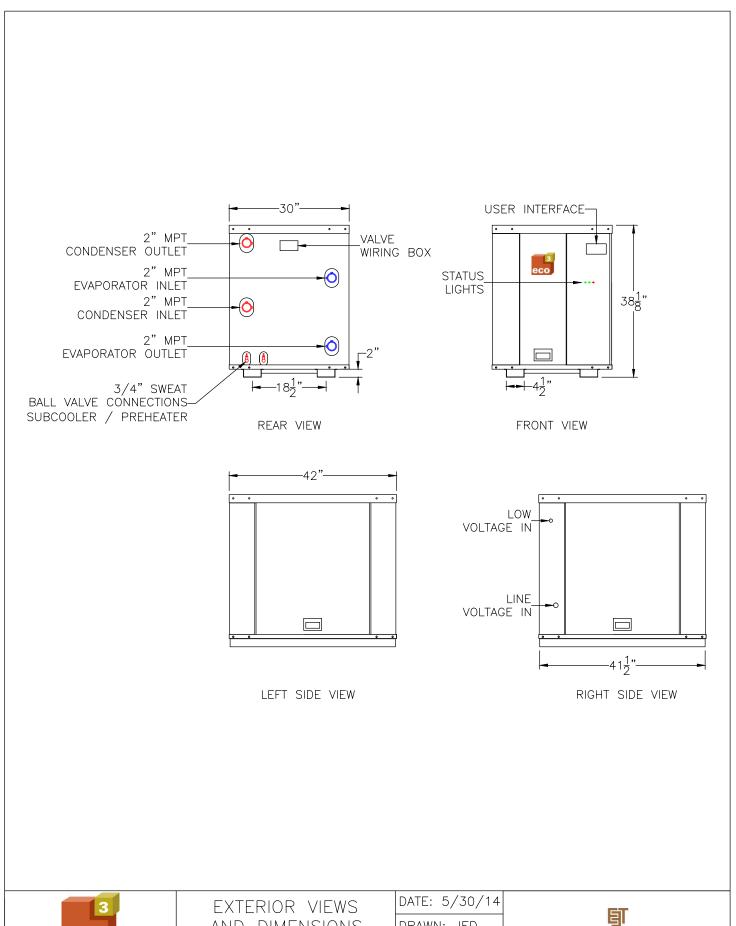
- a. The cabinet shall be fabricated from 16 gauge polished stainless steel. The cabinet shall have removable access panels on three sides, and a hinged access door over the electrical cabinet.
- b. The interior shall be insulated with $\frac{1}{2}$ " (13 mm) thick multi-density, coated glass fiber, with edges sealed or tucked under flanges.
- c. All units shall have 7/8" (22 mm) and 1 1/8" (29 mm) knockouts for entrance of low and high voltage wiring.
- d. Cabinet dimensions shall be less than 31" (788 mm) in width or depth to permit units to be easily moved through a standard size door.
- e. The unit shall be built on a 14 gauge stainless steel baseplate. The cabinet shall be built to allow service access to the internal components. The baseplate shall have skids to allow for forklift handling the unit and to sit the unit on the floor or mount to a stand. This design minimizes the physical space requirements of the units.

Optional Mounting Rack:

Unit(s) can be mounted on a painted welded carbon steel rack supplied by the manufacturer.

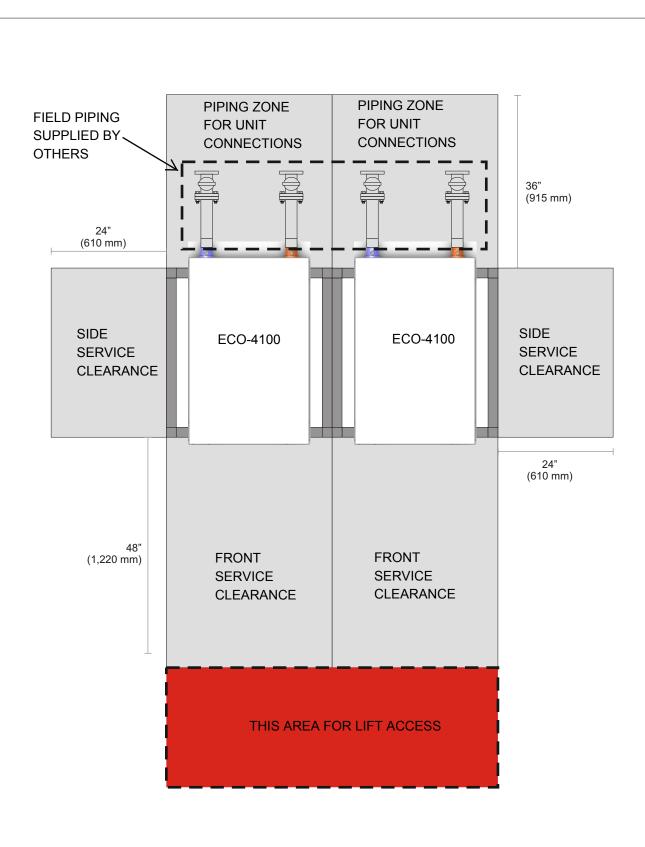
Warranty Information:

Emerald Environmental Technologies has great confidence in the quality of the eco³ unit and this is reflected in our warranty. The unit shall be warranted by the manufacturer against defects in materials and workmanship for a period of one (1) year from date of delivery to original purchaser-user including the compressor, condenser, evaporator and expansion valve. The stainless steel cabinet shall be warranted for life against defect in materials and workmanship, excluding damage due to rough handling, abuse, accident or casualty loss, chlorine or salt air exposure, airborne contaminants or outdoor installation. Other warranty options are available, please contact manufacturer for details.


Separate Control Hostin Performance Data Condense Control Hostin Performance Data Control Hostin Pe	1	1															
Contention Con		- 1	0-4100 Heat	Pump Performand	ce Data										<u>%</u>	ev. (2) 6/3/2	014
Triangle		Fvanorator				Condenser				Heating & Cooling	Canacity	Ι,					
FF / G FF / G USGPN / Intro-	_	FET	1	Flow	G	FFT	191	Flow	G	Heating Canacity	á	FFR, C	Joling Canacity	, acc	FFR,	kw.	kW/ton
89/786 809/226 100/630 138/411 538/1875 75 26 479/3376 67 223 225 225 225 225 225 225 225 225 225		(°F/°C)	(°F/°C)	USGPM / litres/s	(ft / kPa)	(°F/°C)	(°F/°C)	USGPM / litres/s	(ft / kPa)	(MBH / kW)	3		(MBH / kW)	Š	i		in fami
89/7264 6 907/322 100/630 138/411 530/1525 6 5 2 46/1238 6 5 3 124 217 5 100/327 100/372 100/373 100/630 138/411 530/1525 6 5 2 18 2 45/1230 5 8 1 100/372 100/373 100/630 138/411 521/1525 6 6 1 20 26 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1		50.0 / 10.0	39.5 / 4.16	100 / 6.30	16.0 / 47.7	75 / 23.8	85.9 / 29.9	100 / 6.30	13.8 / 41.1	539 / 157.8	7.6	56	470 / 137.6	6.7	22.9	20.5	0.52
85/232 100/3729 100/630 138/411 531/1525 64 128 431/1225 53 126 231 120/632 138/411 531/1525 64 128 431/1225 53 125 120/632 138/411 531/1432 65 25 431/1408 64 52 128 231 120/632 138/411 531/1432 65 25 431/1408 64 52 23 138 138/411 531/1432 65 25 431/1408 64 52 23 23 23 23 23 23 23		50.0 / 10.0	39.6 / 4.22	100 / 6.30	16.0 / 47.7	80 / 26.6	90.7 / 32.6	100 / 6.30	13.8 / 41.1	538 / 157.5	7.3	25	464 / 135.8	6.3	21.4	21.7	0.56
99/322 1003/1932 1006/630 138/411 521/1525 66 20 26 429/1244 499 1166 256 1100/327 1006/630 138/411 521/1526 66 20 26 425/1244 499 166 256 1100/327 100/630 138/411 521/1526 86 29 20 435/1244 499 166 256 126 126 126 126 126 126 126 126 126 12		50.0 / 10.0	39.9 / 4.38	100 / 6.30	16.0 / 47.7	85 / 29.4	95.4 / 35.2	100 / 6.30	13.8 / 41.1	530 / 155.1	6.7	23	451 / 132.0	5.8	19.6	23	0.61
95/35 100/630 138/411 55/1439 55 86 26 45/17444 49 156 55 100/377 1009 432 100/630 138/411 56/14642 86 26/2 48/1408 67 128 208 75/238 66/903 138/411 56/14642 86 26/2 48/1408 67 128 708 86/266 910/327 100/630 138/411 56/14642 86 26/2 48/1408 67 228 208 96/322 100/630 138/411 550/1626 56 26 48/1408 56 26 26 48/1408 56 26 26 46/1435 56 26	_	50.0 / 10.0	40.1 / 4.5	100 / 6.30	16.0 / 47.7	90 / 32.2	100.3 / 37.9	100 / 6.30	13.8 / 41.1	521 / 152.5	6.4	21.8	439 / 128.5	5.3	18.2	24.1	99'0
\$100 \$200 \$100 \$100	_	50.0 / 10.0	40.5 / 4.72	100 / 6.30	16.0 / 47.7		105.1 / 40.6	100 / 6.30	13.8 / 41.1	512 / 149.9	0.9	50.6	425 / 124.4	4.9	16.6	25.6	0.72
86 / 75	_	50.0 / 10.0	40.8 / 4.88	100 / 6.30	16.0 / 47.7		109.9 / 43.2	100 / 6.30	13.8 / 41.1	505 / 147.8	5.5	18.7	412 / 120.6	4.5	15.2	27.1	0.79
85/294 95.9/355 100/630 138/411 556/1616 7 25 25 45 130 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		53.0 / 11.66	42.2 / 5.66	100 / 6.30	15.9 / 47.4	75 / 23.8	86.6 / 30.3	100 / 6.30	13.8 / 41.1	561 / 164.2	8.6	29.2	481 / 140.8	6.7	22.8	20.8	0.51
80/324 35.54 35.55 35.5 100.6 330 138 /41.1 356/151.0 24 466/1364 5.9 20.2 33.3 90/322 100.6/38.1 110.0/6.30 138 /41.1 356/159.5 6.6 453/135.5 5.6 19.2 23.3 95/32 100.6/38.1 100/6.30 138 /41.1 357/157.2 6.2 2.1 450/131.7 5.1 176 25.6 95/32 100.6/37.1 100.8 33.8 /41.1 357/157.43 5.2 18 501/139.3 7.1 24.7 75/23.8 86.6/30.2 100.6.30 13.8 /41.1 556/161.0 7.6 2.6 489/147.3 6.0 2.2 80/26.6 91.4/33.0 100.6.30 13.8 /41.1 556/161.0 7.6 489/147.3 6.0 2.2 480/143.3 7.1 24.7 80/26.5 100.9/39.1 13.8 /41.1 556/162.5 6.0 2.6 469/143.3 7.1 17.6 2.2 3.2 3.2 3.2 3.2 3.2		53.0 / 11.66	42.3 / 5.72	100 / 6.30	15.9 / 47.4	80 / 26.6	91.0 / 32.7	100 / 6.30	13.8 / 41.1	552 / 161.6	7.5	25.5	475 / 139.0	6.4	21.7	22	0.55
99/325 1056/408 1 100/630 138/41.1 545/1595 66 222 450/1317 5.1 176 5 170/630 138/41.1 545/1592 6.2 21 21 206/1317 5.1 176 5 170/630 138/41.1 527/1343 5.7 196 434/127 6.2 21 176 5 172 6 173 6		53.0 / 11.66	42.5 / 5.83	100 / 6.30	15.9 / 47.4	85 / 29.4	95.9 / 35.5	100 / 6.30	13.8 / 41.1	550 / 161.0	7.0	24	466 / 136.4	5.9	20.2	23.3	9.0
95/328 1056/40.8 100/630 138/411 537/1343 5.2 136 434/1270 4.7 1106/377 108/433 100/630 138/411 572/1343 5.2 136 434/1270 4.7 160 2.2 100/371 108/433 100/630 138/411 572/1363 5.2 136 434/1270 4.7 160 2.2 136 5.2 13	_	53.0 / 11.66	42.8 / 6.0	100 / 6.30	15.9 / 47.4	90 / 32.2	100.6 / 38.1	100 / 6.30	13.8 / 41.1	545 / 159.5	9.9	22.6	463 / 135.5	5.6	19.2	24.1	0.62
100/377 1098 432 210 / 630 138 411 527 / 1564 527 1568 156 272 157 1588 565 323 157 1588 586 / 586 1518 1588 1518 1588 1518 1588 1518 1588 1518 1588		53.0 / 11.66	42.9 / 6.05	100 / 6.30	15.9 / 47.4	95 / 35	105.6 / 40.8	100 / 6.30	13.8 / 41.1	537 / 157.2	6.2	21	450 / 131.7	5.1	17.6	25.6	0.68
10 10 10 10 10 10 10 10		53.0 / 11.66	43.3 / 6.27	100 / 6.30	15.9 / 47.4		109.8 / 43.2	100 / 6.30	13.8 / 41.1	527 / 154.3	5.7	19.6	434 / 127.0	4.7	16.0	27.2	0.75
80 266 914 330 100 630 138 411 566 1610 056 205	_	55.0 / 12.77	43.8 / 6.66	100 / 6.30	15.8 / 45.4	75 / 23.8	86.6 / 30.2	100 / 6.30	13.8 / 41.1	572 / 160.1	8.2	28	501 / 139.3	7.1	24.1	20.8	0.49
85/294 96.1/36.3 100/6.30 13.8/41.1 559/161.9 70 24 480/1405 6.0 20.5 23.3 29/23.2 100/9/39.1 100/6.30 13.8/41.1 550/162.5 6.6 2.6 467/137.9 5.6 13.1 24.7 20/0.37 100/37.1 100/6.30 13.8/41.1 533/164.2 5.0 10.6 440/136.1 4.7 16.2 27.2 100/37.1 100/37.2 100/6.30 13.8/41.1 533/164.2 5.0 10.6 440/136.1 4.7 16.2 27.2 100/37.2 100/6.30 13.8/41.1 533/164.2 5.0 10.6 440/136.1 4.7 16.2 27.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	_	55.0 / 12.77	44.2 / 6.77	100 / 6.30	15.8 / 45.4	80 / 26.6	91.4 / 33.0	100 / 6.30	13.8 / 41.1	568 / 161.0	7.6	56	493 / 144.3	6.5	22.3	22.1	0.53
90/322 1009/331 1000/630 138/41.1 550/1625 66 226 467/1379 5.6 191 247 247 267 2	_	55.0 / 12.77	44.3 / 6.83	100 / 6.30	15.8 / 45.4	85 / 29.4	96.1/36.3	100 / 6.30	13.8 / 41.1	559 / 161.9	7.0	24	480 / 140.5	6.0	20.5	23.3	0.58
100/317 100/21436 100/6.30 13.8 / 41.1 543 / 163.5 5.7 19.6 449 / 136.1 5.2 17.5 26.2 100/6.30 13.8 / 41.1 533 / 164.2 5.7 19.6 440 / 136.1 4.7 16.2 27.2 110.0 / 23.7 110.0 / 23.0 110.0		55.0 / 12.77	44.5 / 6.88	100 / 6.30	15.8 / 45.4	90 / 32.2	100.9 / 39.1	100 / 6.30	13.8 / 41.1	550 / 162.5	9.9	22.6	467 / 137.9	5.6	19.1	24.7	69.0
100 / 37.7 110.5 / 43.6 100 / 6.30 13.8 / 41.1 533 / 154.2 5.7 19.6 440 / 136.1 4.7 16.2 27.2 Furthe test fluid: Multipliers for other fluids are as follows: Further consumed fluid temperature: 85 deg. F Condenser assumed fluid temperature: 85 deg. F		55.0 / 12.77	44.8 / 6.94	100 / 6.30	15.8 / 45.4	95 / 35	105.7 / 41.9	100 / 6.30	13.8 / 41.1	542/163.6	6.0	50.6	453 / 137.3	5.1	17.5	26.2	69.0
Evaporator assumed fluid temperature: 55 deg. F Condenser assumed fluid temperature: 55 deg. F Condenser assumed fluid temperature: 85 deg. F ERT LRT Flow PD Heating Capacity ERT LB/H (PSI / kPa) (MBH / kW) 95/35 72.3/22.3 3.146 0.922 / 6.35 29.9 / 8.75 100/37.7 77.6/25.3 3.02 29.9 / 8.75 105/40.5 83 / 28.3 3.098 0.916 / 6.31 29.9 / 8.75 105/40.5 83 / 28.3 3.098 0.916 / 6.31 29.9 / 8.75 105/40.5 81.1/27.2 5764 3.07 / 21.1 54.0 / 15.8 5/de-2 81.1/27.2 5744 3.05 / 21.0 54.0 / 15.8		55.0 / 12.77	45.1 / 7.55	100 / 6.30	15.8 / 45.4	100/37.7	110.5 / 43.6	100 / 6.30	13.8 / 41.1	533 / 164.2	5.7	19.6	440 / 136.1	4.7	16.2	27.2	0.74
Refrigerant Side Facility Condenser assumed fluid temperature: 85 deg. F Condenser assumed fluid temperature: 85 deg. F Condenser assumed fluid temperature: 85 deg. F Facility Condenser assumed fluid temperature: 85 deg. Facility Condense		Pressure drop	is shown in feet c	of head, using 35% Eth)	vlene Glycol as	the test fluir	d. Multipliers fc	or other fluids are as	: follows:								
Refrigerant Side Flow PD Heating Capacity		Water			0.96				ı								
Condenser assumed fluid temperature: 83 deg. r Refrigerant Side ERT Flow PD Heating Capacity (*F/*C) (*F/*C) (B/H) (PSI / kPa) (MBH / kW) 95 / 35 72.3 / 22.3 3146 0.922 / 6.35 29.9 / 8.75 100 / 37.7 77.6 / 25.3 3122 0.918 / 6.32 29.9 / 8.75 105 / 40.5 83 / 28.3 3098 0.916 / 6.31 29.9 / 8.75 95 / 35 70.2 / 21.2 5788 3.10 / 21.3 54.0 / 15.8 100 / 37.7 75.7 / 24.2 5766 3.07 / 21.1 54.0 / 15.8 105 / 40.5 81.1 / 27.2 5744 3.05 / 21.0 54.0 / 15.8		40% Ethylene (Glycol		1.01	Evaporator	assumed fluid t	emperature: 55 de <u>c</u>	7. T								
Refrigerant Side FD Heating Capacity ERT LRT Flow PD Heating Capacity (**F,*C) (**F,*C) LB/H (*PSI / kPa) (*MBH / kWy) 95 / 35 72.3 / 22.3 3.146 0.922 / 6.35 29.9 / 8.75 100 / 37.7 77.6 / 25.3 3.122 0.918 / 6.32 29.9 / 8.75 105 / 40.5 83 / 28.3 3.098 0.916 / 6.31 29.9 / 8.75 100 / 37.7 75.7 / 24.2 5788 3.07 / 21.1 54.0 / 15.8 100 / 37.7 75.7 / 24.2 5744 3.05 / 21.0 54.0 / 15.8 5/de-2 81.1 / 27.2 5744 3.05 / 21.0 54.0 / 15.8		40% Propylene	Glycol		0.99	Condenser	issumed jiuid te	emperature: 85 deg			7						
Refrigerant Side ET Flow PD Heating Capacity (*F/°C) (*F/°C) LB/H (PSI / kPa) (MBH / kW) 95/35 72.3/22.3 3146 0.922 / 6.35 29.9 / 8.75 100/37.7 77.6/25.3 3122 0.918 / 6.32 29.9 / 8.75 105/40.5 83 / 28.3 3098 0.916 / 6.31 29.9 / 8.75 95/35 70.2/21.2 5788 3.00 / 21.3 54.0 / 15.8 100/37.7 75.7/24.2 5766 3.07 / 21.1 54.0 / 15.8 105/40.5 81.1/27.2 5744 3.05 / 21.0 54.0 / 15.8 5ide-2 3.05/21.0 54.0 / 15.8 3.05 / 21.0 54.0 / 15.8											_						
LFT Flow PD Refigerant side PD Heating Capacity ("F,"C] USGPM/litres/s (ft/kPa) ("F,"C] ("F,"C] ("B/H) (WBH/kW) 5 90/32.2 2.0/0.126 0.27/0.82 95/35 72.3/22.3 3146 0.922/6.35 29.9/8.75 5 90/32.2 2.0/0.126 0.27/0.82 100/37.7 776/25.3 3122 0.918 /6.32 29.9/8.75 5 90/32.2 2.0/0.126 0.27/0.82 105/40.5 83/28.3 3098 0.916/6.31 29.9/8.75 5 90/32.2 3.0/0.18 0.58/1.75 105/40.5 83/28.3 3098 0.916/6.31 29.9/8.75 90/32.2 3.0/0.18 0.58/1.75 100/37.7 75.7/24.2 5786 3.07/21.1 54.0/15.8 90/32.2 3.0/0.18 0.58/1.75 105/40.5 81.1/27.2 5744 3.05/21.0 54.0/15.8		Non Potable W	Vater Preneater /	/ Kerrigerant Subcoolei	r Pertormance						_						
tT LRT Flow PD Heating Capacity f*C (*F /*C) LB/H (PSI / kPa) (MBH / kW) f35 72.3 / 22.3 3146 0.92 / 6.35 29.9 / 8.75 37.7 77.6 / 25.3 3122 0.918 / 6.32 29.9 / 8.75 40.5 31.2 0.916 / 6.31 29.9 / 8.75 37.7 77.6 / 25.3 3098 0.916 / 6.31 29.9 / 8.75 38. 70.2 / 21.2 5788 3.00 / 21.3 54.0 / 15.8 40.5 81.1 / 27.2 5744 3.05 / 21.0 54.0 / 15.8	_	water side				Reirigerant					_						
(15) (*F/°C)		EWT	15	Flow	DO :	ERT	LRT	Flow	OD :	Heating Capacity	_						
735 72.3 72.4 6.35 29.9 f 8.75 37.7 77.6 f 25.3 3122 0.918 f 6.32 29.9 f 8.75 37.7 77.6 f 6.31 29.9 f 8.75 39.8 0.916 f 6.31 29.9 f 8.75 39.7 77.6 f 6.31 29.9 f 8.75 39.7 75.7 f 24.2 5766 3.07 f 21.1 54.0 f 15.8 37.7 75.7 f 24.2 5766 3.07 f 21.1 54.0 f 15.8 40.5 81.1 f 27.2 5744 3.05 f 21.0 54.0 f 15.8 54.0 f 15.0 f	_	(°F/°C)	(°F/°C)	USGPM / litres/s	(ft / kPa)	(°F/°C)	(°F/°C)	Н/81	(PSI / kPa)	(MBH / kW)	- 1						
37.7 77.6/25.3 3122 0.918/6.32 29.9/8.75 40.5 83/28.3 3098 0.916/6.31 29.9/8.75 43 70.2/21.2 5788 3.01/21.3 54.0/15.8 37.7 75.7/24.2 5766 3.07/21.1 54.0/15.8 40.5 81.1/27.2 5744 3.05/21.0 54.0/15.8		60 / 15.55	90 / 32.2	2.0 / 0.126	0.27 / 0.82	95 / 35	72.3 / 22.3	3146	0.922 / 6.35	29.9 / 8.75	20° EF	, Retrige	ration Duty				
40.5 83 / 28.3 3098 0.916 / 6.31 29.9 / 8.75 /35 70.2 / 21.2 5788 3.10 / 21.3 54.0 / 15.8 37.7 75.7 / 24.2 5766 3.07 / 21.1 54.0 / 15.8 40.5 81.1 / 27.2 5744 3.05 / 21.0 54.0 / 15.8	_	60 / 15.55	90 / 32.2	2.0 / 0.126	0.27 / 0.82	100/37.7	77.6 / 25.3	3122	0.918 / 6.32	29.9 / 8.75		ſ, Refrige	ration Duty				
35 70.2 / 21.2 5788 3.10 / 21.3 54.0 / 15.8 37.7 75.7 / 24.2 5766 3.07 / 21.1 54.0 / 15.8 40.5 81.1 / 27.2 5744 3.05 / 21.0 54.0 / 15.8	_	60 / 15.55	90 / 32.2	2.0 / 0.126	0.27 / 0.82	105 / 40.5	83 / 28.3	3098	0.916 / 6.31	29.9 / 8.75		ſ, Refrige	ration Duty				
37.7 75.7 / 24.2 5766 3.07 / 21.1 54.0 / 15.8 40.5 81.1 / 27.2 5744 3.05 / 21.0 54.0 / 15.8	_	50 / 10	90 / 32.2	3.0 / 0.18	0.58 / 1.75	95 / 35	70.2 / 21.2	5788	3.10 / 21.3	54.0 / 15.8	55° EF	r, Air Cor	ditioning Duty				
40.5 81.1/27.2 5744 3.05/21.0 54.0/15.8	_	50 / 10	90 / 32.2	3.0 / 0.18	0.58 / 1.75		75.7 / 24.2	9925	3.07 / 21.1	54.0 / 15.8	55° EF	r, Air Cor	ditioning Duty				
Performance Calculated with using R-410A on Side-1 and Water on Side-2	_	50 / 10	90 / 32.2	3.0 / 0.18	0.58 / 1.75	105 / 40.5	81.1 / 27.2	5744	3.05 / 21.0	54.0 / 15.8	55° EF	, Air Cor	ditioning Duty				
		Performance C	alculated with u	sing R-410A on Side-1	and Water on						1						
	_																

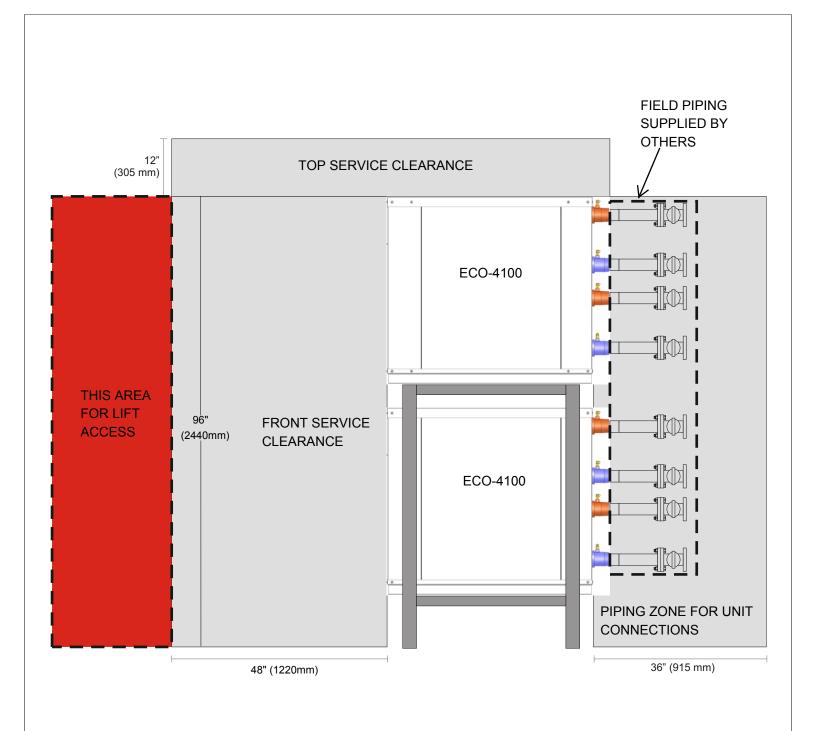
DATA MODEL: ECO-4100 DRAWN: JED

REV: 1



AND DIMENSIONS MODEL: ECO-4100 DRAWN: JED

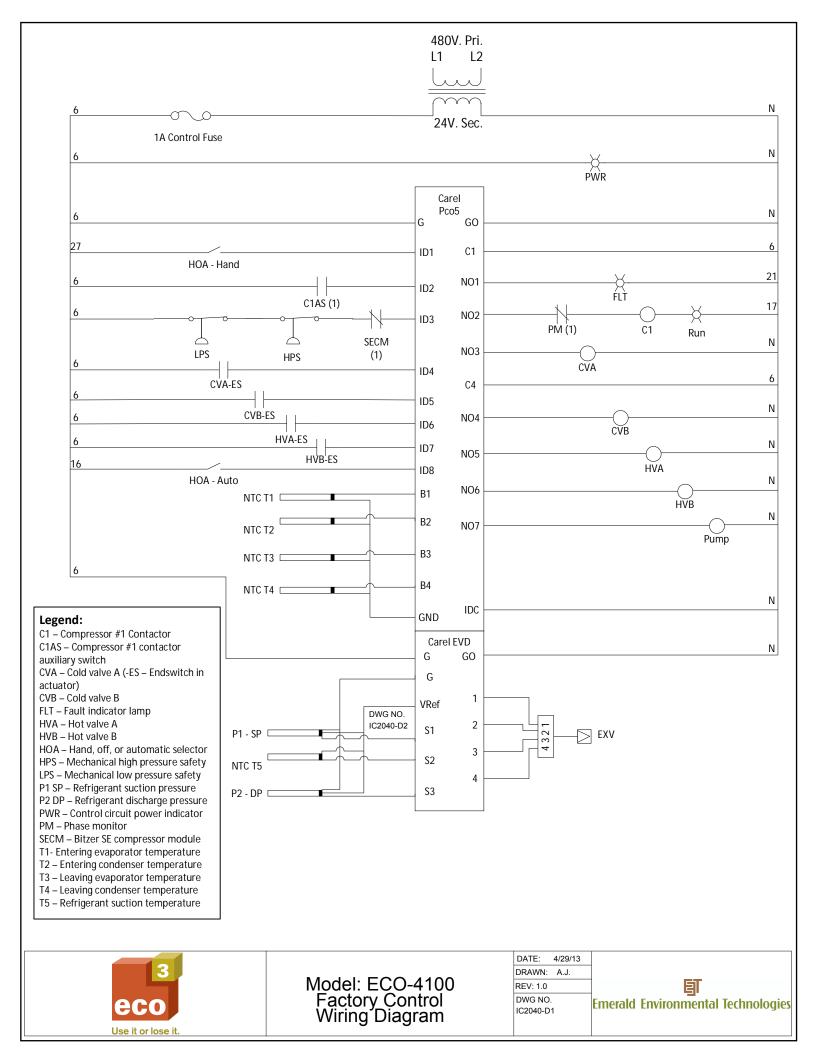
REV: 1

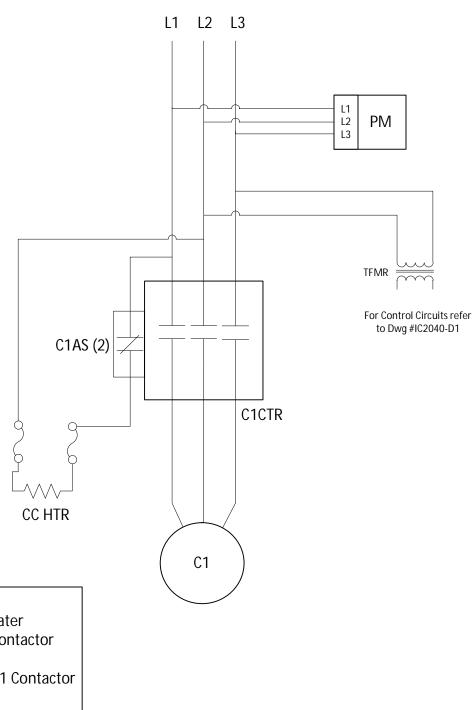


MINIMUM CLEARANCE REQUIREMENTS MODEL: ECO-4100

DATE: 5/30/14	
DRAWN: J.E.D.	
REV: 1	
	En

ভা merald Environmental Technologies




Side view

MINIMUM CLEARANCE REQUIREMENTS MODEL: ECO-4100

DATE: 5/30/14			
DRAWN: J.E.D.			
REV: 1		訂	
	Emerald	Environmental	Technologies
			_

CC Htr- Crankcase Heater

C1AS – Compressor Contactor

Auxiliary Switch

C1CTR- Compressor #1 Contactor

C1 – Compressor #1

PM - Phase Monitor

TFMR - Transformer

Model: ECO-4100 Factory Line Voltage Wiring Diagram

DATE: 5/30/14	Γ
DRAWN: A.J.	l
REV: 1.0	ĺ
DWG NO.	ı
IC2040-D2	ľ

